首页 > 行业 > 农业

中外农业大数据发展对比与思考

作者: +关注作者 来源:现代农业综合 2017-08-28 12:52 标签:
对中国大部分新型农业主体和农场主来说,由于农业数据信息采集与获取管理初始投入成本太高,中国地块分布不均、普遍偏小,数据管理技术和方法不够成熟等问题,并不能像国外农民一样利用农业大数据系统管理土地与收益。农业大省特点是规模化种植与大品类农产品居多,农业数据资源整合与管理具备一定优势,可以借鉴美国精准农业向精准化、智能化方向发展。而相比较农业农产品品类多、地域分布零碎等农业省份,更需要农业数据的整合与共享,对不同品类农业数据建立标准,实现农业生产智能化管理。

现代农业,不仅是农业产业链的各生产要素的现代化,更重要的是要利用大数据技术、智能控制技术、信息技术以及物联网技术将农业产业链的各生产要素充分联系、发挥合力,重构现代农业的生态产业链。

农业大数据涵盖一切与农业相关的数据,无论是农资研发,还是气象、环境、土地、土壤、作物、农资投入等种植过程数据,还是农产品加工、市场经营、物流、农业金融等数据,这些都属于农业大数据的范畴,贯穿整个产业链。

农业无疑是最适合应用大数据的领域之一,因为农业是带有时间属性和空间属性的行业,需要考虑多种因素在不同时间点和不同地域对农业的影响,所以农业大数据的构建具有极其重要和必要。

下面笔者总结了国外一些农业大数据案例,作为我国发展农业大数据的可借鉴经验以供参考。

一、天气意外保险公司(The Climate Corporation)

The Climate Corporation为农业种植者提供名为Total Weather Insurance (TWI)、涵盖全年各季节的天气保险项目。本项目利用公司特有的数据采集与分析平台,每天从250万个采集点获取天气数据,并结合大量的天气模拟、海量的植物根部构造和土质分析等信息对意外天气风险做出综合判断,向农民提供农作物保险。

二、农场云端管理服务商Farmeron

Farmeron旨在为全世界的农民提供类似于Google Analytics的数据跟踪和分析服务。农民可在其网站上利用这款软件,记录和跟踪自己种植农作物及饲养畜牧的情况(各个生产环节的信息等,还有农场的收支信息)。其可贵之处在于:Farmeron 帮着农场主将支离破碎的农业生产记录整理到一起,用先进的分析工具和报告有针对性地监测分析农场及生产状况,有利于农场主科学地制定农业生产计划。

三、土壤抽样分析服务商Solum

Solum致力于提供精细化农业服务,目标是帮助农民提高产出、降低成本。其开发的软、硬件系统能够实现高效、精准的土壤抽样分析,以帮助种植者在正确的时间、正确的地点进行精确施肥。你既可以通过公司开发的No Wait Nitrate系统在田间地头进行分析,即时获取数据;也可以把土壤样本寄给该公司的实验室,让他们帮助你进行分析。

四、社区生鲜超市M6的数据化管理

连锁型的社区生鲜超市M6于8年前就开始了数据化管理,物品一经收银员扫描,总部的服务器马上就能知道哪个门店,哪些消费者买了什么。M6免费为顾客办理实名制会员卡,用户持卡结账可以享受优惠,但M6不找零,这样一来,既可以提高收银效率,又为数据分析提供基础。在一些细节上,M6的收银模块甚至比一些大商超更细致,比如,信息被扫描进系统后,顾客突然要求退掉其中一件或几件,或者整单退掉,为什么要退掉,这些信息全都被写入了后台数据库。

五、告别手工挤奶时代,机器为你代劳

在英国,大部分农场已告别了手工挤奶,自动挤奶设备普及率达90%以上。机器人的作用不仅仅是挤奶,还要在挤奶过程中对奶质进行检测,检测内容包括蛋白质、脂肪、含糖量、温度、颜色、电解质等,对不符合质量要求的牛奶,自动传输到废奶存储器;对合格的牛奶,机器人也要把每次最初挤出的一小部分奶弃掉,以确保品质和卫生。目前,英国大多数养牛和养猪、养鱼场都实现了从饲料配制、分发、饲喂到粪便清理、圈舍等不同程度的智能化、自动化管理。

在美国,挤奶同样变得简单。来自明尼苏达州Astronaut A4挤奶机,不仅帮农场主可以代替农场主喂牛,还会使用无线电或红外线来扫描牛的项圈,辨识牛的身份,在挤奶时对牛的几项数据进行跟踪:牛的重量和产奶量,以及挤奶所需的时间、需要喂多少饲料,甚至牛反刍需要多长时间。机器也会从牛产的奶中收集数据。每一个乳头里挤出的奶都需要查验颜色、脂肪和蛋白质含量、温度、传导率(用于判断是否存在感染的指标),以及体细胞读数。每头牛身上收集到的数据汇总后得出一份报告;一旦A4检测到问题,奶农的电脑或手机上会得到通知。

大数据在农业生产中的应用和案例还不远如此。随着大数据与农业的深度融合发展,以前依靠传统方法不能解决的诸多问题也会迎刃而解。当大数据在IT行业风生水起之时,传统行业的应用也许才是大数据的落地所在。

中国是典型的小农经济,人口众多,地势辽阔,土地资源分配不均。在农业大数据的发展上,早在几年前,一些IT巨头纷纷试水。相应而生,也有一些宏观农业农产品生产大数据平台层出不穷。但是,做精细化的农业大数据,却没有预想那么快,中国农业大数据由于中国地域特点与数据采集基础建设不完善等特点,面临着农业农村数据历史长、数量大、类型多、数据缺失、数据质量不高、开发利用不够等问题。对中国大部分新型农业主体和农场主来说,由于农业数据信息采集与获取管理初始投入成本太高,中国地块分布不均、普遍偏小,数据管理技术和方法不够成熟等问题,并不能像国外农民一样利用农业大数据系统管理土地与收益。

在中国开展农业大数据,结合地域特征做精细化管理是关键。在一些农业大省如山东、新疆、黑龙江等部分地区,精准农业推广已取得一定效果。例如在新疆兵团,农业综合机械化水平已经到达93%以上,卫星导航技术、小型植保无人机、变量施肥技术、自动驾驶技术等已经得到了推进。农业大省特点是规模化种植与大品类农产品居多,农业数据资源整合与管理具备一定优势,可以借鉴美国精准农业向精准化、智能化方向发展。而相比较农业农产品品类多、地域分布零碎等农业省份,更需要农业数据的整合与共享,对不同品类农业数据建立标准,实现农业生产智能化管理。

无论是农业大数据,还有精准农业的应用,都事关中国的每一寸土地,在中国其推广阶段还需经历日求寸进的过程,此期间还需理智认清中国农业发展现状,合作与共享永远会是新常态,最后引用中国工程院院士、中国农业大学教授汪懋华的一句话结尾:其发展取决于:技术装备价格下降和机器是否容易安装和维护;保护性耕作是否得到广泛推广;机械燃料、肥料和服务价格所占的比重。可以效仿国外的经验,根据需要、经济、实用的原则进行,不必一次性把所有的技术都全套应用。只选对的,不选贵的。


---------------------------------

关注菲律宾申博太阳城微信公众号ID:zgqybnews

经济进退、行业冷暖、牛企动静、观察者发言,关于财经你想知道的这都有!

菲律宾申博太阳城娱乐网 菲律宾申博太阳城娱乐信息第一交流平台

相关阅读

评论

Copyright (c) 2017 《菲律宾申博太阳城》集团全媒科技有限公司 Corporation, All Rights Reserved 
本站地址:北京海淀区紫竹院南路17号 邮编:100048 广告咨询:010-68701052 媒介合作:010-68701050
 

微信二维码

微博二维码